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We present a new general-purpose advection scheme for unstructured meshes based on the use of two 
variations of the interface-tracking flux formulation recently put forward by Ubbink and Issa, [10], in 
combination with an extended version of the flux-limited advection scheme of Thuburn, [8], for continuous 
fields.  Thus, along with a high-order mode for continuous fields, the new scheme presented here includes 
optional integrated interface-tracking modes for discontinuous fields.  In all modes, the method is 
conservative, monotonic and compatible.  They are also highly shape preserving.  The scheme works on 
unstructured meshes composed of any kind of connectivity element including triangular and quadrilateral 
elements in 2 dimensions and tetrahedral and hexahedral elements in 3 dimensions.  The scheme is finite-
volume-based and is applicable to control-volume finite-element and edge-based node-centered 
computations.  For the case of continuous field advection, fluxed quantities are computed from an 
upstream, time-centered evaluation of the reconstructed field based on node data and node-centered 
gradients.  In the case of interface tracking, we employ two variations of the scheme recently put forward 
by Ubbink and Issa, [10].  One variation involves a completely explicit version of the Ubbink and Issa 
scheme utilizing our continuous field flux formulation.  The other variation employs Crank-Nicolson time 
centering like the Ubbink-Issa scheme but replaces their iterative correction procedure with an a posteriori 
application of our modified version of Thuburn’s limiter.  Monotonicity, compatibility and shape 
preservation for both the continuous-field and interface-tracking modes are ensured by the use of an 
extension of the multi-dimensional flux limiting scheme of Thuburn, [8], to fully unstructured meshes.  The 
application of the extended Thuburn flux-limiting scheme, furthermore, enables the simultaneous solution 
of the conservation equations and the enforcement of monotonicity and compatibility.  An explicit-implicit 
extension to the continuous-field scheme is provided only to allow for computations in which the local 
Courant number exceeds unity.  The transition from the explicit mode to the implicit mode is performed 
locally and in a continuous fashion to enable smooth hybrid explicit-implicit calculations.  Results for the 
advection of a temperature pulse in two dimensions are presented for structured quadrilateral and 
unstructured triangular meshes. The results demonstrate shape preservation and second-order accuracy (for 
the case of linear reconstruction) for both meshes.  In addition, results for the tracking of discontinuous 
fields are shown for simple translation and the deformation of a fluid drop in a vortical shear flow. The 
latter demonstrates the accuracy of the interface-tracking mode under time reversal. Finally, results from an 
advection calculation on a simple jet flow field demonstrate the smooth explicit-implicit capability of the 
scheme. 
Key Words: advection; reconstruction; interface tracking; volume of fluid; unstructured meshes; 
unstructured grids; finite volume method. 
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1. INTRODUCTION 
 
The development of accurate, conservative, monotonic, compatible, shape-preserving 
numerical advection schemes has been the subject of intense study for several decades.  
Despite this effort, the quest for improved techniques continues.  Leveque, [5], provides 
an extensive survey of the literature on this topic.  Let us begin our discussion here with 
some definitions.  In this paper, the modifier conservative denotes an advection scheme 
that guarantees no loss of conserved quantities, such as mass, in the operation of moving 
material from one conservation volume to another under the action of advection.  We use 
the modifier monotonic to denote an advection operator or scheme, which does not 
produce any unphysical extrema in the updated density field.  This property is also 
sometimes referred to as Total Variation Diminishing or TVD.  Similarly, we use the 
modifier compatible to denote an advection operator or scheme, which does not produce 
any unphysical extrema in the updated mass specific or “mixing ratio” quantities such as 
specific internal energy or velocity.  Finally, we use the modifier shape preserving to 
refer to a scheme that minimizes the distortion of the shape of features in the conserved 
field in multidimensional flows.  An advection scheme which is shape preserving is 
sometimes also said to provide corner coupling.  This typically means that material from 
a given donor cell is transported, in a single application of the advection scheme, to a 
neighboring cell or “corner cell” which has only a vertex in common with the donating 
cell.  Doing this corner-cell transport correctly leads to shape preservation.  All of these 
characteristics are essential for accurate Eulerian flow physics simulation schemes. 
 
Our goal here is to provide an advection scheme that is conservative, monotonic, 
compatible and shape preserving for the cases of both continuous and discontinuous 
density fields in an integrated treatment.  An example of the continuous field case 
emerges in the simulation of a low Mach number compressible gas flow where the mass 
density fields, for example, are smooth continuous functions of space.  An example of the 
discontinuous case would be the simulation of a free surface flow such as the sloshing of 
a liquid in a partially filled tank.  Such an integrated scheme would be an attractive 
candidate in many of today’s general-purpose flow simulation software, particularly 
those that address multi-material and multi-field flow problems. 
 
Thus, we present in this paper, a new general-purpose advection scheme for unstructured 
meshes based on the use of an interface-tracking flux formulation recently put forward by 
Ubbink and Issa,.[10], in combination with an extended version of the flux-limited 
advection scheme of Thuburn, [8], for continuous fields.  In what follows, we provide a 
brief review of the key features of the methods of Thuburn and Ubbink and Issa.  
Following this, we outline our scheme and then provide results on a variety of advection 
examples to show its accuracy and robustness.  The examples include continuous field 
advection; interface-tracking and explicit-implicit advection on quadrilateral and 
triangular element grids (all treated internally as unstructured grids).  We conclude with a 
discussion of future work including an outline of the use of our scheme in a continuous-
remapping, Lagrangian-Eulerian scheme to accommodate right-hand-side physics. 
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2. OVERVIEW OF PRIOR WORK 
 
Thuburn, [8], developed a multidimensional flux-limiting scheme which enabled 
monotonic, compatible continuum advection with shape preservation.  One key aspect of 
Thuburn’s method is his insightful criteria for the selection of limiting values for fluxed 
quantities based on information from both face and vertex neighbors.  The inclusion of 
the vertex neighbor values provides the shape-preservation or corner-coupling properties 
of his scheme.  Another powerful aspect of Thuburn’s method derives from the fact that 
as a flux-limiting scheme, it can accommodate a wide variety of fluxed field 
reconstruction techniques.  Thuburn used a 3rd-order UTOPIA scheme appropriate to 
structured meshes for many of his example calculations but his limiting scheme 
accommodates the use of alternatives.  We will exploit this flexibility in the scheme 
presented in this paper and provide an extension to unstructured grids.   
 
Thuburn’s scheme also ensures the compatibility of mixing ratio quantities such as 
temperature and velocity so it is applicable to a wide variety of applications.  Finally, 
Thuburn describes how his scheme can be used on quantities such as mass density, which 
can exhibit new extrema as the result of non-solenoidal transport velocity fields.  Thus, 
the Thuburn scheme can be applied to virtually any advection task in a coupled 
simulation involving conservation of mass, momentum, energy, etc. Our second 
extension of the Thuburn’s scheme will be to regularize his advection and limiting 
equations so that they maintain compatibility even in the limit of vanishing mass density.  
This extension is particularly important for the cases of multi-material and multi-field 
flow simulations. 
 
Following up on the original volume-of-fluid (VOF) scheme of Hirt and Nichols, [3], and 
ideas for compressive reconstruction by Gaskell and Lau, [1], Ubbink and Issa, [9], have 
recently published a novel interface-tracking scheme.  In their method they compute 
fluxed quantities from a weighted average of estimates based on continuous field 
reconstruction and one based on simple compressive reconstruction.  Ubbink and Issa’s 
weighting factor is based on the angle between the interface surface normal and the 
conservation cell face surface normal and is astutely chosen to avoid interface-wrinkling 
effects seen in previous versions of the VOF method.  Ubbink and Issa use this 
reconstruction strategy for the computation of fluxed quantities inside a Crank-Nicholson 
time discretization of the advection operator to provide good shape preservation 
properties for interface-tracking simulations.  To enforce monotonicity, they introduce a 
correction step to their scheme applied after each successive solution of the Crank-
Nicolson system until they have a monotone future field. 
 
We have developed two variations of the Ubbink-Issa method for use in our general-
purpose scheme.  Our first variation is completely explicit; the second utilizes Ubbink 
and Issa’s Crank-Nicolson scheme.  For the explicit scheme, we first modify the Ubbink-
Issa flux quantity formulation to include our multi-dimensional continuous field flux 
formulation in place of their use of the ULTIMATE-QUICKEST, [4], high-order, one-
dimensional formulation.  This allows us to integrate our interface-tracking formulation 
neatly with our continuous-field formulation.  We find that this formulation works well 
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on both triangular and quadrilateral element meshes.  In this mode, we apply our 
modified version of Thuburn’s multi-dimensional limiter to ensure monotonicity.  In our 
second variation, we use Ubbink and Issa’s Crank-Nicolson approach for obtaining the 
fluxed quantities and replace their iterative correction with an application of our modified 
version of Thuburn’s limiter.  This yields bounded future values without the need for an 
iterative correction scheme to enforce monotonicity.  Thus, the properties of 
conservation, monotonicity, compatibility and shape preservation are enforced 
simultaneously with the solution of the equations. 
 
Finally, we also develop in our scheme an explicit/implicit capability by coupling our 
flux formulations for low Courant number to a fully implicit flux formulation, in a 
smooth fashion, to provide a continuously applicable method for virtually all Courant 
numbers. 
 
3. ADVECTION SCHEME 
 
In the scheme presented in this paper, we adopt and extend the flux-limiting scheme of 
Thuburn and use both continuous field reconstruction and our two modified versions of 
the reconstruction strategy of Ubbink and Issa to provide an integrated advection scheme 
applicable to both continuous field advection and interface tracking for a wide variety of 
applications.  For maximum flexibility, we provide some modest extensions to the 
Thuburn limiting scheme to accommodate fully unstructured grids and enable smooth 
compatible advection even in the limit of vanishing mass densities. 
 
3.1 Conservation equations 
 
Without sacrificing generality, we start with the following prototypical pure-advection 
conservation system for mass with density ρ  and an additional conserved quantity with 
density, qρ .  The equations are 
 

 ( ) 0u
t
ρ

ρ
∂

+ ∇ =
∂

ri  (1) 

and 

 ( ) 0.
q

qu
t

ρ
ρ

∂
+ ∇ =

∂
ri  (2) 

 
Here u

r
 is the velocity field, and q  is a mass specific quantity sometimes called a mixing 

ratio.  It is useful to consider, at this point, the Lagrangian versions of these equations.  
Equation (1), can be written as 
 

 ,
D

u
Dt

ρ
ρ= − ∇ ⋅

r
 (3) 

 
and Equation (2) as 
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 0,
Dq
Dt

=  (4) 

 
where 
 

D
u

Dt t
∂

≡ + ⋅∇
∂

r
 

 
is the familiar material derivative which gives the time rate of change following the 
material motion.  We can now more precisely discuss the concepts of monotonicity and 
compatibility.  First, from Equation (3) we can see that only velocity divergence can 
cause changes in mass density.  So a monotonic advection scheme is one that does not 
introduce any artificial extrema into the mass density field due to numerical inaccuracies.  
In particular, for the case of incompressible or divergence-free velocity fields, a 
monotonic field should ensure that no new mass density extrema are created. 
 
As for compatibility, we can see from Equation (4) that mixing ratio quantities should 
remain constant following the fluid motion even for cases in which the velocity field has 
a divergence.  Thus a compatible advection scheme is one in which no new extrema are 
artificially created due to numerical inaccuracies even for the cases in which the velocity 
divergence is non-zero. 
 
We now develop the discrete finite-volume versions of Equations (1) and (2).  In 
preparation, let us define several quantities.  Let kV  be the volume corresponding to the 
kth node of a given mesh.  Let the average mass density and mixing ratio for that node be 
defined as  
 

1

1

k

k

k
k V

k
k k V

dV
V

q qdV
V

ρ ρ

ρ
ρ

≡

≡

∫

∫

 

 
Then, following Thuburn, we can integrate Equations (1) and (2) over the control volume 
and over a time interval, apply the divergence theorem and discretize the resulting surface 
integrals to obtain the finite-volume versions of Equations (1) and (2) as  
 
 1 ˆ ˆ ,m m in out

k k k f f k f f
f f

C Cρ ρ ρ ρ+
− −= + −∑ ∑  (5) 

and 
 
 1 1 ˆ ˆˆ ˆ ,m m m m in out

k k k k k f f f k f f f
f f

q q C q C qρ ρ ρ ρ+ +
− −= + −∑ ∑  (6) 
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respectively.  The superscripts m and m+1 denote the known and unknown time levels, 
respectively, separated by a time interval, t∆ .  The summations in Equations (5) and (6) 
are carried out over all faces of the control volume. The quantities in

k fC −  and out
k fC −  are 

inflow and out-flow Courant numbers for face f of the kth control volume and are defined 
as 
 

 
ˆ

ˆ( ) fin
k f f k f

k

V
C H u n

V− −= − ⋅
r n  (7) 

and 
 

 
ˆ

ˆ( ) fout
k f f k f

k

V
C H u n

V− −= ⋅
r

 (8) 

 
where H is the Heaviside function, fu

r
is the average velocity on face f, ˆk fn − is the 

outward surface unit normal of face f for the kth control volume and ˆ
fV is the volume of 

material that passes through face f  over the time interval t∆ given by the formula 
 
 ˆ ˆf f f fV t u n A= ∆ ⋅

r
 (9) 

 
where fA  is the area of face f and ˆ fn is either one of the face normal vectors for the 

adjacent control volumes.  The quantity ˆ
fV is often referred to as the flux volume. 

 
The quantities ˆ fρ and ˆ fq  in Equations (5) and (6) are the average values of the ρ and q  
over the flux volumes for face f.  We will refer to these quantities as fluxed values or 
fluxed quantities.  
 
In order to compute the updated values of q we follow Thuburn, [8], and divide the left 
and right hand side of Equation (5) into the respective left and right sides of Equation (6) 
and then divide the resulting right hand side numerator and denominator by m

kρ to obtain 
 

 1

ˆ ˆˆ ˆ( ) ( )
 .

ˆ ˆ1 ( ) ( )

m in m out m
k k f f k f k f f k f

f fm
k in m out m

k f f k k f f k
f f

q C q C q
q

C C

ρ ρ ρ ρ

ρ ρ ρ ρ

− −
+

− −

+ −
=

+ −

∑ ∑
∑ ∑

 (10) 

 
Equation (10) is the final update formulation presented by Thuburn, [8], for the mixing 
ratio quantity.  While this form was suitable to Thuburn’s purposes, we must modify it in 
order to enable smooth calculations in the limit as 0m

kρ → .  Accordingly, we recast 

Equation (10) by extracting m
kq  from the right hand side as a separate term and then by 

multiplying the numerator and denominator of the remainder by m
kρ .  This leaves 
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Equation (10) in the form  
 

 
( ) ( )

1
1

ˆ ˆˆ ˆ
.

in m out m
k f f f k k f f f k

f fm m
k k m

k

C q q C q q
q q

ρ ρ

ρ ε

− −
+

+

− − −
= +

+

∑ ∑
 (11) 

 
Here we have used Equation (5) to further simplify the denominator of the second right- 
hand-side term.  Note that we have also added the quantity ε  to the denominator of the 
second term in Equation (11).  This is intended to be a small positive parameter that will 
be used to prevent division by zero in numerical computations.  The idea here is that, 
assuming our mass advection scheme is monotonic, we should never compute a negative 
new-time mass density and we therefore should never have a numerical problem with 
division by zero so long as the numerator in the second term on the right-hand-side of 
Equation (11) tends to zero for the case of vanishing new-time mass density.  If this is so, 
the new mixing ratio, kq will simply remain unchanged.  This desirable behavior will 
emerge from the application of Thuburn’s flux limiter with a few minor extensions. This 
is the subject of the next section. 
 
3.2 Modified Thuburn flux limiter 
 
In this section we discuss our modifications to Thuburn’s flux limiter for the fluxed 
quantities in Equation (11).  Since Thuburn’s limiting procedure is indifferent to the 
method used to compute fluxed quantities, we delay discussion of the formulations for 
the unlimited fluxed quantities to the next section.  Note that, as Thuburn, [8], teaches, 
his flux limiter can be used to limit both the mass density fluxed values, ˆ fρ , as well as 

the mixing ratio fluxed values, ˆ fq .  We continue to use this approach.  We will elaborate 
more on this later.  For now, we will discuss our modifications to Thuburn’s limiting 
scheme to accommodate unstructured meshes and to allow for vanishing mass densities.  
We will confine our attention here only to our modifications and point the reader to 
Thuburn’s paper, [8], for the full explanation of his method. 
 
3.2.1 Upstream neighbor effects 
 
The first modification of Thuburn’s limiting procedure that we have introduced 
generalizes a particular aspect of his method to unstructured grids.  One of the steps in 
Thuburn’s limiting procedure involves widening the limiting bounds on fluxed quantities 
to reflect contributions from inflows from control volumes adjacent to the control volume 
upwind from a given face.  This is the part of Thuburn’s scheme that provides the shape-
preservation characteristics.  In Thuburn’s original prescription, only face-neighbors from 
the upwind control volume that had a common vertex with the flux face in question were 
included.  Thus, for a quadrilateral, the face-neighbor opposite from the flux face in 
question was excluded.  For unstructured meshes, this exclusion, while not impossible, is 
quite onerous.  It is much easier in, for example, the edge-based data structures that we 
used in many of our computations to simply include the effect of all face-neighbors from 
the upstream control volume.  This allowed us to accumulate the upstream neighbor 
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information at each node about upstream face or, equivalently, edge neighbor values 
simply using a sweep through all mesh edges.  Then, when performing Thuburn’s 
technique of widening bounds on fluxed quantities for a given face, we can simply look 
to this accumulated information on the upwind node for the face.  We found that our 
results were not affected by including this additional information. 
 
3.2.2 Protection against division by zero in the limiter 
 
The second modification to Thuburn’s limiting procedure is introduced simply to protect 
against division-by-zero problems similar to what we did in going from Equation (10) to 
Equation (11).  More specifically, Thuburn provides formulas for bounds on out-flow 
fluxed quantities using the conservation equations and information from surrounding 
neighbor node data.  Our alternative forms for these formulas are 
 

 ( )
( )( ){ } ( ){ }in 1 1

maxmax
( )

min
ˆ

in m m m m
k f f k k k k

fout m
k k out

k f
f

C q q q q
q q

C

ρ

ε

+ +
−

−

 − − −
 

= +
+

∑
∑

 (12) 

 
 

 ( )
( )( ){ } ( ){ }in 1 1

minmin
( )

max
ˆ

in m m m m
k f f k k k k

fout m
k k out

k f
f

C q q q q
q q

C

ρ

ε

+ +
−

−

 − − −
 

= +
+

∑
∑

 (13) 

 
where ( )( )

min
ˆ out

kq  and ( )( )
max

ˆ out
kq  are the minimum and maximum bounds for the outflow 

fluxed values for q for the kth control volume that ensure compatible advection.  The 
quantities ( )( )in

max
fq  and ( )( )in

min
fq  are the maximum and minimum inflow values for the 

fluxed quantities for face f based on upstream data including the effect of the nodes 
adjacent to upstream control volumes as discussed in [8] and including our own 
modifications discussed in Section 3.2.1 of this paper.  Finally, ( )1

max

m
kq +  and ( )1

min

m
kq +  

are the maximum and minimum future values for the quantity q based on the values from 
upstream neighbors, [8]. 
 
With the exception of the additional term, ε , in the denominators of Equations (12) and 
(13), these equations are algebraically identical to Equations (42) and (43) in [8].  In our 
form, we have separated the right hand side into two parts, the first being the time m 
value, m

kq , which would correspond to explicit donor-cell advection and then a second 
part which contains the high-order correction.  We have added the small positive quantity 
ε  to the denominator simply to protect from division by zero in machine computations. 
 
3.2.3 Clipping to enforce future bounds 
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In principle, the use of Thuburn’s limiter with the extensions outlined above should result 
in computed future values of q that are bounded by ( )1

max

m
kq +  and ( )1

min

m
kq + , that is, 

compatible.  In practice, particularly for the case of vanishing mass densities, we have 
found that round-off errors can produce unbounded results.  We therefore introduce an 
additional step to Thuburn’s scheme after the update using Equation (11), which clips any 
result that is out of bounds.  We feel justified in doing this because the results should be 
bounded and any bounds violation is due only to round-off problems. Specifically, we 
perform the following operations at each node 
 

( )1 1 1

max
min , ,m m m

k k kq q q+ + + →    

 
and 
 

( )1 1 1

min
max , .m m m

k k kq q q+ + + →    

 
This then provides a compatible advection scheme.  This only seems necessary in the 
limit of vanishing mass density and thus should not introduce any substantial 
conservation errors. 
 
3.3 Limiting mass densities for monotonic advection 
 
As Thuburn has pointed out, [8], we can use his limiting scheme to place bounds on the 
fluxed mass densities, themselves to avoid unphysical extrema.  Thuburn’s strategy is 
simply to replace q by ρ, and the product ˆCρ  by C  in his limiting procedure.  (Here C  
stands for either in

k fC −  or out
k fC − .)  By doing this, the limited mass densities are bounded by 

the surrounding mass density data after including the effects of compression and 
expansion by the divergent velocity field.  The same strategy applies to our modified 
version of Thuburn’s limiter presented above. 
 
3.4  Fluxed quantity formulation 
 
Now that we have outlined our modifications to the Thuburn limiting scheme, we are in a 
position to discuss our formulation for the computation of the flux quantities before 
limiting.  Our approach here is first to provide an alternative to the 3rd-order UTOPIA 
scheme used by Thuburn to one that is more appropriate to unstructured grids.  Following 
this we then provide an overview of our modified version of the Issa-Ubbink flux 
formulation for interface-tracking computations. 
 
3.4.1 Continuous field flux formulation 
 
For the case of continuous field advection, we begin with the familiar notion of a Taylor 
series about a point, ox

r
, for the variation of a field, φ , in the local space in the kth 

control volume 



 10

 
 ( ) ( ) ( ) ...k o oo

x x xφ φ φ= + ∇ ⋅ − +
r r r

 (14) 
 
where φ  could be either a mass density or a mixing ratio.  In principle, we can extend 
the Taylor Series to arbitrary order to achieve higher spatial accuracy.  In the examples 
we present here we will truncate after the linear term to produce an advection scheme 
that is formally 2nd order accurate.  If we take ox

r
 to be the position of the node, then oφ  

is simply the average of φ  in the control volume.  The first gradient must then be 
supplied to the method by some suitable numerical differencing scheme.  In our work we 
used a simple, so-called, Green-Gauss method 
 

 ( ) 1
f f k fk

fk

A n
V

φ φ −∇ ≈ ∑ r
 (15) 

 
where the quantity fφ  is the average value of φ  for face f.  We employ two methods to 
compute this average value from surrounding nodal data.  In the first method, we simply 
use the average of the two node values across the face f.  In the second method, we 
compute average values of φ  for each of the vertices of face f.  These vertex values are 
computed as averages of local surrounding data.  Since each face vertex corresponds to a 
unique mesh element and is approximately at the center of this element, we use the 
element node data as the surrounding data.  These face vertex values are then averaged 
with the two values across the face to give the final face value.  For example, the first 
method corresponds to a five point stencil on structured quadrilaterals; while the second 
method corresponds to that of a 9 point stencil. 
 
This approach is general and works for all element types.  In our computations, the first 
method was used for continuous field advection and the second method was used for 
interface tracking advection.  This was done because we found that the second method 
gave improved shape preservation properties to the interface tracking calculations. 
 
We then use Equations (14) and (15) to obtain an estimate of the average value of φ  in 
the flux volume by evaluating φ  at a point half way up (back in time) the characteristic 
following the motion from the centroid of the face f, fx

r
.  That is, 

 

 
1ˆ
2f u fx u tφ φ  = − ∆ 

 
r r

 (16) 

 
where the subscript u denotes the fact that we use the Taylor series from the upwind 
control volume. 
 
3.4.2 Discontinuous field flux formulation 
 
We now address the case of discontinuous fields.  Specifically, we are interested in cases 



 11

in which we are trying to track interfaces in our calculations.  In these cases, the 
discontinuous field is volume fraction.  In multi-field flow simulations, the volume 
fraction, α, is related to the conserved macroscopic density, ρ , and the microscopic 
intrinsic material density, oρ as oα ρ ρ= .  We now discuss our modified formulation of 
the Ubbink-Issa formulation for volume fraction fluxes, α̂ .  Once these volume fraction 
fluxes are computed we may then reconstruct the mass density fluxes as ˆ ˆ ˆ oρ αρ= . 
 
3.4.3 Modified Ubbink-Issa formulation 
 
Let us now consider directly, the flux formulation for a volume fraction field.  We 
assume that we are completely resolving material interfaces and the volume fraction is 
either 0 or 1 at any point in space in the continuous limit.  Of course, in the numerical 
calculation, the average volume fraction in a control volume can be fractional if the 
volume is only partially filled with the material in question.  This means that the nodal 
values for volume fraction can vary continuously between 0 and 1 over three contiguous 
control volumes.  This is the case that Ubbink and Issa, [10], have recently addressed. 
 
The original VOF method by Hirt and Nichols, [3], made use of the combination of a 
compressive reconstruction and a continuous field reconstruction in order to maintain the 
sharp step profile of a discontinuous field such as a fluid interface.  Ubbink and Issa, 
[10], recently provided a very effective means of smoothly varying between the 
compressive and continuous field schemes by taking the weighted average between the 
two. They make use of a locally bounded, one-dimensional, differencing scheme first 
described by Gaskell and Lau, [1] for the compressive reconstruction, and Leonard’s, 
one-dimensional, high-order ULTIMATE-QUICKEST, [4], for their continuous field 
reconstruction.  The weighting between the compressive and continuous-field 
reconstruction is a function of the angle between interface normal vectors, as determined 
from upstream volume fraction gradients, and cell face normal vectors.  Ubbink and Issa 
extend these hybrid one-dimensional treatments to multiple dimensions by time-centering 
the fluxed values using a Crank-Nicolson scheme.  That is, they apply their hybrid flux 
formulation to the time m and m+1 data, separately, and then average to obtain the final 
flux values for volume fraction that are used in the conservation equation.  Thus, their 
method has an implicit component so finding the time m+1 solution requires a system 
solver.  To enforce monotonicity, Ubbink and Issa apply a correction between successive 
linear solutions to fix out-of-bounds values.  For a more detailed description of their 
algorithm see [9] and [10]. 
 
We employ the bulk of Ubbink and Issa’s scheme here in our general-purpose 
framework.  We make, however, two separate modifications to produce two alternative 
variations more suitable to our needs.  In the first variation, we replace the use of the 
ULTIMATE-QUICKEST, one-dimensional high-order formulation for the continuous-
field flux value with our multi-dimensional scheme outlined above.  We then use this flux 
formulation in a fully explicit mode and employ our modified version of Thuburn’s 
limiter on the resulting fluxed values to ensure monotonocity.  In our second variation of 
the Ubbink-Issa scheme, we use a slightly modified version of their Crank-Nicolson 
formulation wherein we replace their iterative correction scheme with an a posteriori 
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application of our modified version of Thuburn’s, [8], limiting scheme ensuring only one 
linear solution per time step. 
 
In Ubbink and Issa’s scheme, the volume fraction flux is computed as a weighted average 
of the upwind and downwind node volume fractions 
 
 ( )ˆ 1f f D f Aα β α β α= − +  (17) 

 
where Dα  and Aα  are the downwind and upwind node volume fractions.  The weight 
factor fβ  is a complex function of the surrounding volume fractions and the material 
interface and control volume face surface unit normal vectors, [10].  In order to avoid 
introducing a non-linear system for the new time volume fraction, Ubbink and Issa 
advocate time lagging the weight factors in their Crank-Nicolson formulation for multi-
dimensional computations.  Thus, their final expression for the fluxed volume fraction is 
 

 ( )
1 1

ˆ 1
2 2

m m m m
D D A A

f f f

α α α α
α β β

+ ++ +
= − +  (18) 

 
 
where fβ is evaluated with time m data.  Ubbink and Issa imply that the fully non-linear 

fluxing value, with fβ values evaluated with both time m and m+1 data, would actually 
do a better job of representing the time average of volume fluxes through a given time 
step. We initially implemented the full non-linear version.  Since we are now routinely 
solving non-linear systems using the Jacobian-Free Newton-Krylov solution methods, 
[1], this extension of their method did not place any additional requirements on our 
solution software.  However, we did not see any appreciable additional benefit of the 
non-linear fluxing values.  Since the linear fluxing values are more computationally 
economical, we chose to retain these in our work. 
 
As mentioned above, we apply our modified version of Thuburn’s limiter to the resulting 
converged time-centered, Crank-Nicolson flux values for density.  These limited fluxing 
quantities are then used to obtain the future values of density from Equation (5). 
 
3.4.4 Explicit-implicit flux value formulation 
 
Our last item for discussion in the flux value formulation section of this paper is the 
method we use to smoothly pass from the explicit formulations described in Sections 
3.4.1 and 3.4.2 to an implicit formulation.  We do this by combining flux values 
computed using our high-order explicit formulation with explicit upwind and a fully 
implicit flux value.  Let us denote the explicit 1st order upwind flux value as ˆ

f donorφ − , the 

implicit flux value as ˆ
f ssφ −  and the explicit high-order continuous field flux as ˆ

f hoφ − .  In 

this paper, we used the upwind node time m+1 value for ˆ
f ssφ − .  This, of course, can be 

generalized to more sophisticated, accurate choices in the future.  Then our combined 
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expression for the explicit-implicit fluxed value is 
 
 exp

ˆ ˆ ˆ
f f implicit f licitφ φ φ− −= +  (19) 

 
where 
 

 maxˆ ˆmax 0,1
f

f implicit f ss
D

C
C

φ φ− −

 
= − 

  
 (20) 

 
and where the explicit fluxed value is a combination of the explicit 1st order and high-
order values 
 

 max
exp

max max

ˆ ˆ ˆmin 1, min 1, 1 min 1,f f

f

D D
f licit f donor f ho

D

C CC
C C C

β β

φ φ φ− − −

               = + −      
                 

 (21) 

 
where 

fDC  is the sum of all outflow Courant numbers for the upwind control volume for 

face f  
 
 

f u

u

out
D D f

f

C C −= ∑  (22) 

 
 
and maxC is a maximum value for the outflow Courant number at which the expressions 
are matched for continuity.  Thuburn, [8], reports that a Von Neumann stability analysis 
shows that the maximum stable Courant number is one.  So, in theory, maxC  should be set 
to one.  In practice, we may want to set maxC to a value slightly less than one to be safe.  
In our work, we took it to be 0.85. 
 
The rationale behind the term in braces in Equation (21) is that we wish the explicit flux 
to tend toward the explicit donor value as Courant number approaches one.  This is done 
to keep high order flux values from introducing noise as the evaluation point on the 
characteristic moves farther back and potentially outside the upstream control volume.  
The exponent β is intended to control the transition from the high order flux values and 
the explicit donor value.  For higher values of β the transition occurs at higher Courant 
numbers.  We used 50 in our computations.  The high value delayed the transition from 
high-order to 1st order upwind to Courant numbers of about 0.8. 
 
Notice that in the limit as the Courant number tends to infinity, the explicit flux value 
tends to zero and the implicit flux value tends to the steady-state flux value.  This 
property can be exploited so that the advection scheme can work in both a time 
dependent service and in a steady-state service.  (See Section 5). 
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4. RESULTS AND DISCUSSION 
 
In this section we present several test cases that exhibit the accuracy of the various 
components of our new integrated advection scheme.  In each of the examples the 
density, ρ , is updated each time step with Equation (5).  In several of the examples we 
also compute a temperature field, q , (with unit specific heat) that is transported with the 
material according to Equation (11).  With this choice of variables, the product qρ  can 
be usefully considered a mixture temperature.  (For example, if we have the special case 
of a two-phase, non-conducting mixture with each phase having unit microscopic 
material density and one phase with zero temperature and the other with temperature, q , 
then qρ  would be the mixture temperature.)  In all cases, we compute with flux values 
computed with the reconstruction methods discussed in this paper and limit them with 
our modified version of Thuburn’s, [8], limiter.  We first show continuous field advection 
on structured and unstructured meshes.  Shape-preservation on both quadrilateral and 
triangular element meshes is demonstrated.  Our next two example calculations 
demonstrate the accuracy of our interface-tracking mode for the cases of simple 
translation and deformation in a vortical shear field.  Both of these are common test 
problems used in validating interface-tracking methods. The simple translation test case 
includes the transport of a temperature field with the material as well.  Here we 
demonstrate good shape preservation as well as compatible advection of a mass specific 
quantity, temperature.  In the case of vortical shear flow, under time reversal, we show 
that we essentially recover the initial conditions.  Error norms from these simulations on 
quadrilateral and triangular element meshes are tabulated along with those of [7] and 
[10].  Finally, we show a computation of advection of concentration in a jet flow field, 
which shows the efficacy and utility of our explicit-implicit formulation. 
 
Two domains, a unit square and a rectangle, have been used to compute the results 
presented in this section.  Each domain is discretized with structured quadrilateral 
elements and unstructured triangular elements having approximately the same number of 
nodes.  Figure 1 and Figure 2 show the triangular element versions of these two meshes.  
The quadrilateral meshes have a grid spacing of 0.01 for the unit square and 0.02 for the 
rectangular mesh in each coordinate direction. 
 
4.1 Shape preserving continuous field advection 
 
We first demonstrate the accuracy of our scheme for continuous field advection on both 
structured quadrilateral and unstructured triangular grids.  The domain for the 
computation is the unit square. 
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Figure 1. 10,000-node triangular element mesh. 
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Figure 2.  20,000 node triangular element mesh of rectangular domain. 

 
We start with an initial condition in which the density field is initialized with the 
following distribution 
 

( ) ( ) ( ) ( )
2 2

2 20.2 0.2
1 cos   for 0.2 0.2 0.2

0.2
1

 2

0                                                       otherwise.

x y
x y

π

ρ

  − + −  + − + − <
  

 
= 






 

 
The temperature of this material is simply set to one where there is material and zero 
where there is not.  That is 
 

( ) ( )2 21      for 0.2 0.2 0.2 

0     otherwise.

x yT
 − + − <= 


 

 
The existence of zero material density on the mesh provides us with a good test of our 
modifications to Thuburn’s limiter.  At time zero, the material is subjected to a velocity 
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field along the diagonal of the unit square with unit velocities along the two coordinate 
directions.  The Courant number for these computations, based on the node volumes was 
0.5.  The computations were carried out over 240 time steps.  The results of the 
computations are shown in Figure 3 through Figure 9. 
 

 
 

Figure 3. Continuous field advection on the quadrilateral element mesh.  The inserted 
contour plot is an overhead view of the final peak. 

 



 18

 
 

Figure 4. Continuous field advection on the triangular element mesh.  The inserted 
contour plot is an overhead view of the final peak. 

Figure 3 and Figure 4 show the initial and final density field from the computation on the 
quadrilateral and triangular element meshes using the present scheme.  The initial peaks 
are shown on the left and the final are shown on the right.  The inserted contour plot 
provides an overhead view of the final state.  The results in these figures show the 
monotonicity, the good peak preservation, and the shape preservation capabilities of the 
scheme. 
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Figure 5. Continuous field advection on the triangular element mesh using 1st order 
upwind flux values.  The inserted contour plot is an overhead view of the final peak. 

 
As a point of reference for these results, we show in Figure 5 the corresponding results 
for a 1st order upwind method on the quadrilateral mesh.  These results show considerable 
peak height loss due to numerical diffusion and loss of shape.  The percent difference 
between the initial and final peak values are, 1.2%, 1.5%, and 45.4% for Figure 3, Figure 
4, and Figure 5, respectively. 
 
Figure 6 and Figure 7 show line contour plots of the temperature fields, q , resulting from 
the advection computations. 
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Figure 6.  Line contour plot of the final temperature field for quadrilateral mesh 
computation.  The temperature inside tightly packed contour lines is one; the temperature 
on the outside is zero. 
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Figure 7. Line contour plot of the final temperature field for triangular mesh 
computation.  The temperature inside tightly packed contour lines is one; the temperature 
on the outside is zero. 

 
In each case, the temperature is one over the entire path of the material.  This is expected 
by the design of our update Equation, (11), which leaves the temperature of a node 
unchanged if it empties or is empty.  This is an artifact of having a zero density material 
in the background.  In a real multiphase flow calculation, for example, this sort of thing 
would not happen because the temperature of the material outside the plume would be 
dictated by the physics of the other material.  We saw no compatibility problems with the 
temperatures remaining bounded between zero and one.   
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A more useful way to look at the temperature in this case, is to look at what we called the 
mixture temperature, qρ , as shown in Figure 8 and Figure 9. 

 
 

Figure 8.  Final mixture temperature ( qρ ) field for quadrilateral mesh computation. 
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Figure 9. Final mixture temperature ( qρ ) field for triangular mesh computation. 

 
In these figures, we see a more physically intuitive temperature pattern with the mixture 
temperature non-zero only where the material is. 
 
Finally, we also performed these computations on two unit square meshes with 
discretizations twice and four times as coarse as the base meshes used in the above 
examples.  From these computations we obtained error norms which showed that the 
method displays 2nd order convergence for both the quadrilateral and the triangular 
element meshes. 
 
4.2 Compatible, shape preserving interface tracking advection 
 
We now demonstrate the accuracy of the interface-tracking component of the new 
scheme.  For the translation of a material in a constant velocity field we start with a unit 
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step in the shape of a hollow square for both density and temperature in the lower left 
corner of the rectangular domain, centered at ( ) ( ), 0.48,0.48x y = . The internal width of 
the square is 0.4 and the external width is 0.8.  This is the same prescription used by 
Ubbink and Issa, [10].  We compute on both the quadrilateral and triangular element 
meshes of the rectangular domain discussed in Section 4.  In this case we advect with a 
velocity field of ( ) ( ), 2.0,1.0u v =  and compute at a Courant number of 0.25 over 750 
time steps. 
 
The results from these computations for both quadrilateral and triangular meshes are 
shown in Figure 10 through Figure 14. 
 

 
 

Figure 10.  Initial (top row) and final (bottom row) density, temperature, and mixture 
temperature for the Crank-Nicolson interface-tracking computation on the quadrilateral 
element mesh. 
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Figure 11. Initial (top row) and final (bottom row) density, temperature, and mixture 
temperature for the Crank-Nicolson interface-tracking computation on the triangular 
element mesh.   
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Figure 12. Initial (top row) and final (bottom row) density, temperature, and mixture 
temperature for the explicit interface-tracking computation on the quadrilateral element 
mesh.   
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Figure 13. Initial (top row) and final (bottom row) density, temperature, and mixture 
temperature for the explicit interface-tracking computation on the triangular element 
mesh. 

As with the continuous field advection, we saw no non-compatible temperatures, nor any 
non-monotonic density results for all cases.  The shape preservation characteristics of the 
our schemes look very good as well.  To quantify the accuracy of the calculation we 
computed the L1 error norm of the final state as defined in [10].  Table 1 shows the L1 
error norms as presented in [7] and [10] as well as those for the current scheme for this 
example problem.  We see that both our implicit and explicit schemes on the quadrilateral 
element mesh are comparable to those of Ubbink and Issa’s.  Note that Rudman’s FCT-
VOF and Hirt and Nichol’s method due exceedingly well for quadrilaterals.  This is an 
artifact due to the alignment of the interface with cell faces and the one-dimensional, 
direction-split nature of these two schemes.  As is seen in the next section the order of 
these errors is not typical of these schemes for general problems.  Shortcomings of our 
two new methods show up in terms of the L1 error norms for the triangular element mesh.  
However, the contour plots show acceptable shape preservation for this problem. 

 
Method L1 Error Norm 
SLIC, [6] 0.1320 
Hirt-Nichols, [3] 0.0069 
FCT-VOF, [7] 1.63e-8 



 28

Youngs, [11] 0.0258 
Ubbink and Issa, structured [10] 0.0250 
Ubbink and Issa, unstructured [10] 0.0397 
Present Crank-Nicolson scheme, 
quadrilaterals 

0.0182 

Present Crank-Nicolson, triangles 0.0512 
Present explicit scheme, quadrilaterals 0.0311 
Present explicit scheme, triangles 0.0800 

 

Table 1 L1 error norms for the box translation problem. 

 
4.3 Interface tracking in a vortical shear field 
 
Here we perform a calculation of the deformation of a circular unit step of material in a 
vortical shear field on the quadrilateral and triangular element meshes with both the C-N 
and explicit methods.  This is a common test problem for interface tracking.  In the 
computation, we advect the material with a prescribed shear velocity field for one 
rotation.  We then reverse the velocity field and advect the material back to the original 
state.  The exact solution to the problem has the material returning to its original position 
and circular shape.  The x component of velocity for the forward rotation is 
 
 ( ) ( ) ( ), sin cos .u x y x yπ π= +  (23) 
 
The corresponding y component of velocity is 
 
 ( ) ( ) ( ), cos sinv x y x yπ π= −  (24) 
 
The signs of the expressions are flipped for the reverse-rotation part of the computation.  

The initial and final position of the material is 
1

( , ) (0.5,0.2 )x y
π

π
+

=  with a radius of 

0.2.  We performed our computation with a time step such that the maximum Courant 
number on the quadrilateral element mesh was no greater than 0.25.  This corresponds to 
2000 total time steps. The number of time steps was retained for the triangular element 
mesh computation; the maximum courant number was 0.3.  The results of the 
computation are shown in Figure 14 through Figure 16.  The L1 error norms from 
references [7] and [10] along with those of our methods are given in Table 2. 
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Figure 14.  Contour plot of density for the Crank-Nicolson interface-tracking results 
from vortical shear flow on the quadrilateral element mesh.  The top row shows plots at 
times of 0.0, 0.016, and 0.032 seconds and the bottom at times of 0.048, 0.064, and 0.08 
seconds. 
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Figure 15. Contour plot of density for the Crank-Nicolson interface-tracking results from 
vortical shear flow on the triangular element mesh. The top row shows plots at times of 
0.0, 0.016, and 0.032 seconds and the bottom at times of 0.048, 0.064, and 0.08 seconds. 
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Figure 16. Contour plot of density for the explicit interface-tracking results from vortical 
shear flow on the quadrilateral element mesh. The top row shows plots at times of 0.0, 
0.016, and 0.032 seconds and the bottom at times of 0.048, 0.064, and 0.08 seconds. 
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Figure 17. Contour plot of density for the explicit interface-tracking results from vortical 
shear flow on the triangular element mesh. The top row shows plots at times of 0.0, 
0.016, and 0.032 seconds and the bottom at times of 0.048, 0.064, and 0.08 seconds. 

 
Method L1 Error Norm 
SLIC, [6] 0.0459 
Hirt-Nichols, [3] 0.0660 
FCT-VOF, [7] 0.0314 
Youngs, [11] 0.0086 
Ubbink and Issa, structured [10] 0.0290 
Ubbink and Issa, unstructured [10] 0.0182 
Present implicit scheme, quadrilaterals 0.0181 
Present implicit scheme, triangles 0.0388 
Present explicit scheme, quadrilaterals 0.0155 
Present explicit scheme, triangles 0.0346 

 

Table 2.  L1 error norms for the vortical shear problem. 

 
As seen in the contour plots, the original circular shape is very nearly recovered in all 
cases.  The error norms reveal that our explicit method is more accurate than all of the 
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other methods, for quadrilateral element meshes, except for Young’s method. This is not 
wholly unexpected since the Young’s scheme involves considerable geometric 
reconstruction.  The results on the triangular element meshes are very promising. The 
error norms are acceptable and no ‘flotsam’, [7], was generated. 
 
4.4 Explicit-implicit advection in a jet flow field 
 
In this final example, we perform a simulation of the transport of a concentration pulse in 
a two dimensional jet.  We take our velocity field from the velocity potential for a two-
dimensional, inviscid-flow source doublet where the potential is given by 
 

cos
,

2 r
µ ϑ

ϕ
π

= −  

 
where ,r ϑ  are polar coordinates and µ  is a source strength.  On the unit square, the 
velocity components, ( ),u v , are 
 

2 2

42
u

r
µ ξ η
π

−
=  

 
and 
 

4v
r

µ ξη
π

=  

 
where 2 2 2r ξ η= +  and ξ  and η  are scaled and shifted spatial coordinates given by 

( )x xs xξ δ= +  and ( )y ys yη δ= + .  For our example problem, we took, 0.46xδ = , 

0.5yδ = − , 1.0xs = , and ( )22y xs π δ=  so 1u =  at ( ) ( ), 0,0.5x y = .  The velocity field 
and some corresponding stream-lines are shown in Figure 18. 
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Figure 18.  Velocity field and stream lines for jet flow advection problem. 

 
In the example calculations, the density field was constant and initially, the temperature 
field was also zero.  At time zero, the temperature of the inflowing material was set to 
one for a period of 0.5 time units after which, the inflow temperature was set back to 
zero.  Thus, a finite pulse of temperature was introduced into the flow.  The results of the 
computations are shown in Figure 19 for the quadrilateral element mesh and Figure 20 
for the triangle element mesh. 
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Figure 19.  Temperature contours for jet flow advection problem on quadrilateral 
element mesh. 
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Figure 20. Temperature contours for jet flow advection problem on triangular element 
mesh. 

 
In the each of the Figures, the top two graphics are from a simulation in which the time 
step was such that the Courant number was below one for all nodes.  The bottom two 
graphics, on the other hand were from computations in which the Courant number for the 
node at ( ) ( ), 0.0,0.5x y = was 10 and decreased across the mesh to 0.1.  The two graphics 
on the left side of each of the figures shows the temperature at a time of 0.5 after the 
initial injection.  The two graphics on the right side of each of the figures shows the 
temperature at a time of 5 after the initial injection.  From the figures, we can see that the 
high Courant number results, which were computed using the explicit-implicit extension 
of our scheme, discussed in Section 3.4.4, are qualitatively similar to the fully explicit, 
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low Courant number results.  The most obvious discrepancy is in the early results in the 
left graphics where numerical spreading is apparent.  Although there are still differences 
at later time, the results are quite similar.  This similarity suggests that our explicit-
implicit scheme would be a useful technique to use in problems in which localized high 
velocity regions exist and computer resource constraints prohibit a fully explicit 
computation.  While there are inaccuracies associated with the explicit-implicit 
technique, qualitatively realistic results can be obtained. 
 
4.5 Discussion 
 
The motivation for the work presented in this paper was to develop an accurate general- 
purpose advection scheme for unstructured, as well as structured, meshes for both 
continuous and discontinuous fields. For the case of continuous field advection, fluxed 
quantities are computed from an upstream, time-centered evaluation of the reconstructed 
field based on node data and node-centered gradients.  The use of our extended version of 
Thuburn’s limiter ensures monotonic and compatible future values of mass and mass 
specific quantities.  This scheme has been determined formally to have second order 
convergence on quadrilateral and triangular element meshes.  For discontinuous fields, 
two variations of the Ubbink-Issa, [10], method have been developed. The first is a fully 
explicit scheme that combines our continuous field face quantities with those obtained by 
the compressive difference scheme.  These are then limited with our extended Thuburn 
limiter.  In the second variation, we solve for the face flux quantities using Ubbink and 
Issa’s Crank-Nicolson formulation but follow this with an a posteriori application of our 
extended version of Thuburn’s limiter instead of their iterative correction scheme to 
enforce monotonicity.  This ensures only one linear solution per time step.  Both methods 
have been shown to do quite well on both quadrilateral and triangular element meshes.  
Of particular note was the ability of our explicit scheme to out-perform all other methods 
except for Young’s method on the vortical shear flow problem on quadrilateral element 
meshes.  This is extremely promising, particularly for a method that does not use 
directionally split advection nor interface reconstruction. 
 
5. FUTURE WORK - LAGRANGIAN-EULERIAN FORMULATION 
 
We conclude our discussion here with a look toward the use of our advection scheme in a 
general-purpose flow simulation code.  For such a role, we must be able to use the 
scheme in more complicated Equations than Equations (1) and (2), specifically for the 
case in which the right hand sides are not zero.  For these cases, our plan is to use a 
Lagrangian-Eulerian integration approach to solving the Equations.  Let us briefly 
illustrate what we mean on the generic equation 
 

 ( )u f
t
φ

φ φ
∂

+ ∇ ⋅ =
∂

r
 (25) 

 
where ( )f φ is any Lagrangian physics such as diffusion or pressure gradient acceleration 
for example. We can apply the Lagrangian-Eulerian scheme in two steps by discretizing 
in time as follows.  We first perform the Lagrangian step where we include the implicit 
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flux part of the advection operator as implA  
 
 ( ) ( )L m L L

impltA tfφ φ φ φ= + ∆ + ∆  (26) 

 
we then follow this with the Eulerian advection step 
 
 ( )1

exp
m L L

ltAφ φ φ+ = + ∆  (27) 

 
where ( )L

implA φ  is the advection operator using only implicit flux values as defined by 

Equation (20) and ( )exp
L

lA φ  is the advection operator with fluxed quantities computed 

using Equation (21) and using the Lagrangian data as the known nodal data.  This 
formulation has the desirable property that is interpolates from fully explicit 
Langrangian-Eulerian scheme to a fully implicit scheme.  Thus the formulation will 
handle high accuracy time-dependent problems and steady-state problems.  Moreover, the 
algorithm will handle problems with both high and low Courant number nodes 
simultaneously. 
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